Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry

نویسندگان

  • J. Bouman
  • M. Fuchs
  • E. Ivins
  • W. van der Wal
  • E. Schrama
  • P. Visser
  • M. Horwath
چکیده

The orbit and instrumental measurement of the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) satellite mission offer the highest ever resolution capabilities for mapping Earth’s gravity field from space. However, past analysis predicted that GOCE would not detect changes in ice sheet mass. Here we demonstrate that GOCE gravity gradiometry observations can be combined with Gravity Recovery and Climate Experiment (GRACE) gravity data to estimate mass changes in the Amundsen Sea Sector. This refined resolution allows land ice changes within the Pine Island Glacier (PIG), Thwaites Glacier, and Getz Ice Shelf drainage systems to be measured at respectively 67± 7, 63± 12, and 55± 9 Gt/yr over the GOCE observing period of November 2009 to June 2012. This is the most accurate pure satellite gravimetry measurement to date of current mass loss from PIG, known as the “weak underbelly” of West Antarctica because of its retrograde bed slope and high potential for raising future sea level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes

The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974-1990, before switching to ad...

متن کامل

Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability

Outlet glaciers grounded on a bed that deepens inland and extends below sea level are potentially vulnerable to 'marine ice sheet instability'. This instability, which may lead to runaway ice loss, has been simulated in models, but its consequences have not been directly observed in geological records. Here we provide new surface-exposure ages from an outlet of the East Antarctic Ice Sheet that...

متن کامل

Sub-decadal variations in outlet glacier terminus positions in Victoria

Recent work has highlighted the sensitivity of marine-terminating glaciers to decadal-scale changes in the ocean–climate system in parts of East Antarctica. However, compared to Greenland, West Antarctica and the Antarctic Peninsula, little is known about recent glacier change and potential cause(s), with several regions yet to be studied in detail. In this paper, we map the terminus positions ...

متن کامل

Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula

[1] Satellite radar interferometry data from 1995 to 2004, and airborne ice thickness data from 2002, reveal that the glaciers flowing into former Wordie Ice Shelf, West Antarctic Peninsula, discharge 6.8 ± 0.3 km/yr of ice, which is 84 ± 30 percent larger than a snow accumulation of 3.7 ± 0.8 km/yr over a 6,300 km drainage basin. Airborne and ICESat laser altimetry elevation data reveal glacie...

متن کامل

Rapid changes in ice discharge from Greenland outlet glaciers.

Using satellite-derived surface elevation and velocity data, we found major short-term variations in recent ice discharge and mass loss at two of Greenland's largest outlet glaciers. Their combined rate of mass loss doubled in less than a year in 2004 and then decreased in 2006 to near the previous rates, likely as a result of fast re-equilibration of calving-front geometry after retreat. Total...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014